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Abstract. Human trajectory prediction is typically posed as a zero-
shot generalization problem: a predictor is learnt on a dataset of hu-
man motion in training scenes, and then deployed on unseen test scenes.
While this paradigm has yielded tremendous progress, it fundamentally
assumes that trends in human behavior within the deployment scene are
constant over time. As such, current prediction models are unable to
adapt to transient human behaviors, such as crowds temporarily gath-
ering to see buskers, pedestrians hurrying through the rain and avoiding
puddles, or a protest breaking out. We formalize the problem of context-
specific adaptive trajectory prediction and propose a new adaptation ap-
proach inspired by prompt tuning called latent corridors. By augmenting
the input of a pre-trained human trajectory predictor with learnable im-
age prompts, the predictor improves in the deployment scene by inferring
trends from extremely small amounts of new data (e.g., 2 humans ob-
served for 30 seconds). With less than 0.1% additional model parameters,
we see up to 23.9% ADE improvement in MOTSynth simulated data and
16.4% ADE in MOT and Wildtrack real pedestrian data. Qualitatively,
we observe that latent corridors imbue predictors with an awareness of
scene geometry and context-specific human behaviors that non-adaptive
predictors struggle to capture.
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1 Introduction

Human motion prediction is a fundamental skill for intelligent systems to effec-
tively navigate the world, assist end-users, and visually survey a scene. To date,
learning-based human trajectory prediction has been extensively studied, making
huge strides in predicting multimodal future behavior [28], modeling multi-agent
social interactions [2,18,39], and accounting for scene context [27,55]. Some ap-
proaches have exploited the fact that humans tend to move in similar patterns by
storing prior trajectories in a bank and matching a current observed trajectory
to the closest stored one [30,31,49,53].

However, a fundamental assumption underlies the current trajectory predic-
tion paradigm: predictors are assumed to be deployed within an unchanging con-
text. Nevertheless, in the real world, the context—and thus patterns of human
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Fig.1: Adaptive trajectory prediction. (left) Given a history of human behavior
(shown in black), the pre-trained predictor P is unable to understand deployment scene-
specific behavior trends, like people entering a subterranean subway entrance (bottom
row) or mostly choosing to traverse the staircase as opposed to exploring other parts
of the scene at nighttime (top row). (right) When adapting, the number of people and
amount of time determine the total number of trajectories observed, and we denote
this time-dependent quantity human-seconds. Here, the three columns correspond to
our method trained for a very small (left), medium (middle), and large amount of
human-seconds (right). Our adaptive latent corridors approach enables P to quickly
learn context-specific trends, improving predictions with even small amounts of data,
and closing the gap between the ground-truth (green) and predicted behavior (orange).
For example, in the middle row, P predicts the person will move towards the camera,
but as our method sees more human-seconds of data, it adapts to the trend that at
this point of scene capture in the plaza, people tend to avoid the center of the plaza
and instead move diagonally across it.

behavior—will inevitably change over time, as Whyte observed in his famous
study of urban public spaces [48]. For example, a new subway entrance being
built causes people to descend and exit in new patterns (bottom row, Fig. 1),
and icy sidewalks in the winter will be traversed differently than clear ones in
the summer. These changes happen on shorter temporal horizons, too: Humans
rushing to work during the day will largely ignore each other while nighttime
party-goers will walk in cliques. A college campus will be quiet while class is
in session and chaotic in the 10 minute period where students rush between
classes. Even if data is captured from exactly the same location, human behav-
ior patterns can change in minutes or hours. When faced with such changes, the
performance of existing trajectory predictors immediately degrades.

Here, we study how to efficiently adapt pre-trained trajectory predictors
to observed human behavior within a deployment scene (right, Fig. 1). Our
technical approach takes inspiration from the recently popularized paradigm of
prompt-tuning in large language models [23], but instantiates this idea within the
adaptive trajectory prediction problem. Specifically, we augment the input to an
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existing human trajectory predictor with a set of latent image prompts, one per
each instance of a deployment scene we wish to adapt to. We leave all or most
of the predictor frozen, and tune each input prompt with the same trajectory
prediction loss that is used to train the base predictor, letting cues in human
behaviour be captured while preserving useful structure in the original predic-
tor (e.g., even if a new subway entrance lets people descend into the ground,
other people may still move towards the existing above-ground coffee shops).
Our adaptation is data-efficient: even extremely small amounts of new human
trajectories (e.g., < 1 minute of human seconds, corresponding to 2 humans
observed over 30 seconds) can leak sufficient information about how humans
interact with the scene (e.g., new subway entrance) or with each other (e.g.,
nighttime social cliques) to learn this prompt and improve future trajectory pre-
diction. We call our learnable prompt a latent corridor: a non-physical corridor
that guides human behavior in this scene.

Given the small amounts of data, latent corridors train quickly—on average
within minutes on a single 2080 Ti GPU—even without optimizations to im-
prove training speed. With more compute resources and training optimization,
latent corridors hold the potential to learn in real time, adapting to transient
events such a fire starting or a musician busking. Even with minimal compute
and optimization, we also find useful offline applications of latent corridors for
adaptation to repeated events. For example, imagine analyzing pedestrian flow
in a downtown business district — it will differ during the rush hour before work
on the weekday and on a weekend morning. During the course of a week, latent
corridors could be trained to adapt to the varying scene and context specific
behaviours present on different days, times, and surveillance camera viewpoints.
Once training is complete, adapted models could be used online for months,
until an event such as construction starting or a change of season causes a sig-
nificant change in behaviour. Our method is lightweight, making swapping latent
corridors for different times of day or locations inexpensive, even on device.

In our experiments, learning latent corridors for prediction adaptation en-
ables up to 23.9% prediction accuracy improvement on simulated data from
MOTSynth [12] compared to a non-adaptive predictor that takes as input the
scene and has seen all the same data. On real data from MOT and WildTrack [7],
we see a 16.4% improvement on non-adaptive predictors and an 11.2% improve-
ment with adapting via our method as opposed to just fine-tuning, and on in-the-
wild webcam data we see respective improvements of 26.8% and 20.0%. Latent
corridor adaptation can improve prediction performance even with a very small
amount of data, and continually improves as more data is observed over time.

To summarize, our contributions are as follows:

1. We formalize the adaptive trajectory prediction problem.

2. We propose a novel method for adaptive trajectory prediction by learn-
ing lightweight latent corridor prompts in image space, outperforming non-
adaptive trajectory predictors with less than a 0.1% parameter increase.

3. We demonstrate qualitative and quantitative improvements of up to 23.9%
ADE improvement in MOTSynth simulated data, 16.4% ADE in MOT and



4 N. Thakkar et al.

Wildtrack real pedestrian data, and 26.8% ADE on in-the-wild webcam data,
over a scene-aware baseline.

2 Related Work

Human Trajectory Prediction is a well-studied problem with a long and
rich history [36]. Prediction methods started from simple models such as social
forces [5,15], and later added multimodality through Gaussian processes [42].
Recently, modern learning-based predictors have made significant progress in in-
corporating social interactions between humans modelled via RNNs [17, 39, 44],
GANSs [13], or conditional VAEs [28], all while generating multimodal future
trajectories. Another line of work incorporates the scene context in predictions,
getting neural network features from a scene map [20, 22,29, 30,37,43,51], em-
bedding gridded scene context in an LSTM [29, 52|, and more recently using
transformers [33,38]. A few works incorporate scene context by projecting the
trajectories into heatmaps so that the network can reason in image space [6,27],
allowing for longer-term predictions. Our work builds upon these advances by
adapting an RGB scene-aware pre-trained trajectory predictor [27] over time.

Adapting Human Trajectory Predictors. In the past few years, there has
been a growing interest in lightweight ways to modify pre-trained predictors to
new data. The key differences between these works lie in 1) what they are adapt-
ing to, and 2) how they adapt. Several works focus on cross-domain transfer,
wherein a predictor trained for trajectory prediction in domain A (e.g., New
York) is adapted to work in domain B (e.g., London). These works leverage
architectures that partition generic trajectory prediction from domain-specific
features [46, 50], leverage adaptive meta-learning via Kalman flitering [16], or
simply finetune the prediction network on new data [25]. Other works focus on
online adaptation over time, for example by adapting to different agent dynamics
using recursive least squares [1,10]. A few approaches carry out continual learning
by storing embedded past/future trajectory pairs in a memory bank [30,49,53]
or clustering them [41], predicting by matching an individuals history to the
most similar stored past. Going a step further, [31] instead stores representative
group trajectories in a scene and during inference, refines the selected trajectory
with scene segmentation. In contrast, our novel prompting-based adaptation ap-
proach is memory-efficient, using constant extra parameter space regardless of
trajectory dataset size, and inherently utilizes the scene segmentation, not re-
quiring extra refinement steps. It also directly augments an existing model as
opposed to requiring a new, specialized architecture.

Prompt Tuning in Language & Vision. With the rise of large pre-trained
models, efficient adaptation for downstream tasks has gained increasing inter-
est. In the large language model domain, prompt tuning—wherein a few tunable
tokens (i.e., prompt) are prepended to input text and tuned per downstream
task—has been shown to be remarkably effective [23,24, 26]. In vision models,
image prompts [45] have been introduced to adapt a vision model to new tasks [3]
or instruct an inpainting model to carry out various computer vision tasks [4].
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Recently, there have also been attempts at visual prompt tuning, showing that
large vision transformers can benefit from utilizing tuned prompts for contin-
ual learning or transfer learning [19, 34,40, 47]. While our task is different, we
were inspired by the prompting scheme of [19] that learned classification on
a new dataset by introducing a trainable input space prompt and tuning the
prompt along with the transformer predictor head. We use visual prompts as a
lightweight way of adapting a trajectory predictor. To our knowledge, we are the
first work to apply prompt tuning to human trajectory prediction.

3 Problem Formulation

Here, we present a formalization of our proposed adaptive trajectory prediction
problem. We seek to generate accurate future trajectories of N agents in a scene.
At any time 7, let 0, := o,_pg.r € O be the H-step history of observations
input into the predictor, y, := yr41..47 € YV be the ground-truth T-step future
trajectory, and ¥, := §r41.-4+7 € Y be the prediction outputs. We assume access
to a base predictor P pre-trained on a human motion dataset consisting of past
and ground-truth future trajectories, D = {0;,y;} X, to minimize a loss function
on trajectories, ¢ (e.g., mean squared error).

Adaptive Trajectory Prediction (ATP). We aim to adapt P to a deploy-
ment scene by observing new human trajectory data over a time interval. Let the
dataset of new human trajectory data be Dj.; collected over the T step time in-
terval. Here, D’ can contain data from real or synthetic deployment scenes, a new
physical environment or one from the pre-training dataset, a new or previously
seen time period (e.g., nightime vs. daytime), and can be obtained by a new or
previously seen camera pose. However, we assume that human pedestrians are
present in the scene and they are navigating an outdoor environment. We adapt
to scenes captured for a similar amount of time, between T' = 45 seconds and 5
minutes. We aim to adapt to scene-specific characteristics and fluctuating events
beyond those that can be exploited by conditioning only on a segmentation map.
In the adaptive trajectory prediction problem, a subset of the deployment
dataset Df., t < T is observed. The goal is create an adapted model A[P] such
that the prediction error decreases over the future observed deployment data
DI/S:T:
((A[P(o)],y) < {(P(o),y), (0,¥) € Dy (1)
Intuitively, as the value of ¢ increases and the adapted predictor sees more data,
the performance of A[P] should improve over the pre-trained predictor P. At
deployment, A[P] should have learned scene context-specific characteristics of
human behavior.

4 Adaptation via Learned Latent Corridors

To adapt our trajectory predictor efficiently, we take inspiration from language-
based prompt-tuning [23] and instantiate it within our adaptive trajectory pre-
diction problem. Specifically, we augment a frozen base predictor with a learnable
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Fig. 2: Adapting a predictor P with latent corridors. Pg, Pp and Pp are pre-
trained on the task of human trajectory prediction, taking as input trajectory heatmaps
M, _ g. and segmentation S, and outputting predicted trajectory heatmaps M, 41.r47.
We augment P with a per-scene latent corridor p which is summed element-wise to the
input trajectory heatmaps. The latent corridors are trained with Pg and Pp frozen.
The predictor head Pp can be frozen, tuned on a single deployment scene, or tuned
jointly across multiple scenes.

latent prompt we call a latent corridor, a non-physical corridor that informs the
predictor of human behavior patterns in a specific deployment scene. In this sec-
tion, we detail our predictor architecture, prompt representation and training,
and investigate a suite of latent corridor prompting configurations.

4.1 Base Trajectory Predictor Architecture

Our base predictor model, P, consists of three modules: an encoder Pg, decoder
Pp, and predictor head Pp (see Figure 2). We use the YNet encoder for Pg,
and trajectory decoder architecture for Pp and Pp [27].

Scene and trajectory representation. To capture the scene, the RGB image
I of the first video frame is processed with the Mask2Former semantic seg-
mentation model [8,9]. The final semantic segmentation map, S, is obtained
by downsampling the segmentation classes to C' = 12 meaningful classes for
pedestrians in outdoor environments. We follow [27], and convert the history of
observed agent positions x._g., € RZ%2 into a trajectory of heatmaps, M, _g..,
each of the same spatial size as I, for a total size of H x h x w. Heatmaps are
concatenated with the semantic segmentation map S; the final input into P is
o, := ([M;_p.r,S]) of size (C + H) x h x w. The predictor also outputs a tra-
jectory of heatmaps, I\A/IT+1:T+T. The corresponding ground truth T-step future
agent trajectory, y, € RT*2 is also converted into a trajectory of heatmaps,
M, t1.747, for loss computation.

Loss function. We train the predictor with a binary cross entropy loss on the
trajectory heatmaps,

l:= ZBCE(P([MT—H:ﬂS])7M7'+1:T+T)~ (2)
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For evaluation, a softargmax operation is used to sample 2D points from the
predicted heatmap MT+1:7+T as in [27]. This yields predictions in x-y pixel
space, Y- = Ura1.-47, for computing displacement error metrics in Section 6
with respect to the ground-truth future positions, y.

4.2 Representing & Learning Latent Corridors

Our key idea for adapting trajectory predictors is to augment the frozen base
model P with a set of trainable prompts, called latent corridors, which learn
new trends in how humans interact with the scene or with each other. For effec-
tive adaptation, we seek two key properties for our latent corridors: parameter-
efficient (i.e., we want to minimize the number of parameters that are tuned
from new deployment data) and spatially scene-grounded (i.e., the latent should
have pixel-wise alignment with the scene image). We first outline our prompting
approach, and then discuss a compact but spatially-grounded representation of
the prompt that is amenable to parameter-efficient learning.

Latent corridor prompt. For each of the K deployment scenes, we introduce a
unique trainable prompt, pi € R**%, of the same spatial size as the image I that
is input into the predictor (left, Fig. 2). For a network that has adapted to K
scenes, we have a set K of prompts p := {po,p1,...,px }. Thus, our adaptation
rule to scene k is

A=M;®p, Vte{r—H,...,7} (3)

The prompt is summed element-wise to each of the input heatmaps correspond-
ing to the observed trajectories; let M = M @ p denote this for any original M.
See Supplement Sec.1 for an ablation on prompt location. The adapted predictor
takes as input P([M,_g.,, 5]).

A compact but spatially-grounded representation. In Equation (3), the
prompt is assumed to be the same size as the image, h X w, which is nice for
spatial alignment between the prompt and scene. However, in our experiments,
where all images are of size h = 288 and w = 480, this naive image-based rep-
resentation requires learning an additional 138K parameters. Considering that
our base predictor P has ~ 900K trainable parameters, this prompt increases
the model parameter size by over 15% and makes it infeasible to learn meaning-
ful latent corridors from small amounts of new human trajectories. Instead, we
propose a low-rank representation of the prompt with rank 1. We initialize our
latent corridor as a vector of dimension A + w using Kaiming initialization [14],
and parameterize the full prompt as the outer product of the h and w dimen-
sional vectors. This lightweight representation preserves the spatial relationship
between the prompt, scene, and trajectory heatmaps and is significantly more
compact: it increases the model parameter size by less than 0.1%.

Training. We learn the prompt p while the predictor encoder Pr and decoder
Pp are frozen. The predictor head Pp is optionally tuned and the latent cor-
ridors can be trained individually on one scene at a time, or simultaneously
amongst many scenes (see Section 4.3). We use the same trajectory loss ¢ from
Equation (2) that the base predictor was pre-trained with.
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4.3 Prompting configurations

One of the strengths of our latent corridors approach is that it is compatible
with a suite of deployment desiderata that can inform how the prompts are
incorporated into the predictor. We identify and study three settings. In each
setting, K unique prompts are trained on K deployment scenes individually, but
the treatment of the predictor head differs.

1. Latent corridor adaptation (LC): The simplest use of latent corridors is
to keep the entire base predictor frozen, including the original predictor head
Pp. This design is the fastest to train since it has the smallest number of
trainable parameters, so it is desirable when rapid adaptation to short-term
transient events occurs. It also enables easy recovery of the base predictor
model and its original performance by simply not inputting a prompt.

2. Multi-scene finetuning (LC + Joint FT): In this setting, each of the K
deployment scenes has a unique latent, but one single predictor head Pp is
jointly tuned across the K scenes. The latents retain unique scene informa-
tion, but P is better adapted to in conjunction with the per-scene latents.
Similarly to the LC approach above, this is a more compact configuration
since one prediction model is used for all scenes, so it is desirable if deploy-
ment hardware has limited space. It is also faster to train than per-scene
finetuning especially as K grows, since multiple predictor heads do not have
to be tuned.

3. Per-scene finetuning (LC + Per-Scene FT): If one secks to maximize
performance within a specific deployment scene, one can jointly finetune K
predictor heads Pp, with K latent corridors per scene. While this results in
the need for a unique predictor for each deployment scene, we find empirically
that this method achieves best in-scene adaptation performance.

5 Experimental Setup

We study our approach on synthetic and real datasets. Here, we detail these
datasets, describe how we evaluate adaptation quality over time, and outline
our trajectory predictor baselines. Together, our experiments on MOT, Wild-
Track and EarthCam scenes cover a diverse range of key real-world properties
including different lighting conditions, flat vs varied environment topologies, dif-
ferent crowd densities, and a variety of types of scenes.

5.1 Datasets

MOTSynth. We start in simulation with MOTSynth [12], a synthetic pedes-
trian detection and tracking dataset of over 700 90-second videos with varying
camera viewpoints and outdoor environments. Pedestrians carry out simple ac-
tions such as walking, standing, or running, and follow manually pre-planned
flows as well as a collision avoidance algorithm. MOTSynth has over 17 hours
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of video; we select a subset of approximately 11 hours of video corresponding
to the 437 scenes with a static camera. Due to the large size of the dataset and
perfect ground truth detections, MOTSynth was a good starting point.

MOT & WildTrack. We also evaluated our approach on the real-world pedes-
trian datasets MOT and WildTrack. WildTrack [7] consists of 7 static camera
viewpoint videos of pedestrians walking through a plaza. We randomly selected
3 videos and took the first 5 minutes of each video. MOT, the multiple object
tracking benchmark, consists of several video datasets of pedestrians navigating
outdoor environments. We combined the datasets MOT15 [21], MOT16 [32], and
MOT?20 [11], and removed videos with dynamic cameras, pedestrian density of
less than 10, and length less than 45s, leaving 4 scenes: MOT16-03, MOT20-02,
AVG-TownCentre, and PETS09-S2L.2.

EarthCam. We evaluate our approach in-the-wild on data from https://www.earthcam. com/,
which has livestream webcam data from around the world available, and from
which we scrape four 5 minute segments of data.

5.2 Train-Test Split Over Time in Human Seconds

Given a video of pedestrians in motion, we prepare our dataset to adapt to the
scene as follows. We use provided annotations or run ByteTrack [54] to get track-
lets of all NV detectable identities in the video. Tracklets are downsampled to 2
timesteps per second, then windowed by 20 timesteps with an observed length
H = 8 and future length 7" = 12. Then, we sort the N identities chronologically
by their first appearance in the scene. We select the first 80% of identities that
appear in the scene for our training dataset, and hold out the last 20% for the
testing set. When we conduct experiments over time, the testing set is always
the same 20% of identities, whereas the training set consists of the first m% of
identities, m < 80%. We report adaptation time in human-seconds of observa-
tion, where 1 person for 1 second is 1 human-second, so for instance, 30 people
observed for 10 seconds each would be 300 human-seconds.

5.3 Base Predictor Pre-Training Dataset

We first pre-train our base predictor P described in Sec 4.1 on a dataset D
which consists of simulated human pedestrian agents moving around various
outdoor environments, captured from a single static RGB camera with any point
of view (not necessarily birds eye view). This dataset comes from 437 90-second
MOTSynth videos with a static camera. We pre-train our predictor on a train-
test split over time of D as described in the previous section.

5.4 Baselines

We evaluate our method with the following baselines.

1. Constant velocity: As in [5].
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Method MOTSynth| MOT |Wildtrack|EarthCam
ADE FDE |ADE FDE |ADE FDE |ADE FDE
Constant velocity 78.5 160.4 (47.7 99.3 [44.9 90.1 [27.3 52.2
Learned trajectory (PECNet-Ours)|51.2 100.0 [49.7 103.4|43.8 83.1 |34.3 55.5
Scene-aware (YNet-Ours) 473 96.5 |44.2 91.0 |33.6 67.7 [23.9 444
ATP (Finetune) - - 41.8 86.9 |31.7 63.5 [21.9 38.7
ATP (LC) 44.6 90.2 43.0 89.2 |32.9 65.9 |23.4 42.8
ATP (LC + Joint Finetune) 42.6 85.3 |- - - - - -
ATP (LC + Per-Scene Finetune) |- - 37.4 74.3 |27.4 54.7 |17.5 30.8

Table 1: Our method vs baselines on synthetic and real-world datasets. The
average ADE and FDE in pixel space of (left-to-right) 437 MOTSynth scenes, 4 MOT
scenes, 3 WildTrack scenes, and 4 EarthCam scenes. Across these synthetic and real
deployment scenes, our latent corridor-only adaptation method is comparable to fine-
tuning the predictor head and outperforms non-adaptive baselines. Our method with
latent corridors and per-scene finetuning consistently outperforms all other approaches.

2. Learned trajectory: Simplified PECNet [28], which is a predictor learned from
position histories but no scene information.

3. Scene-aware: Simplified YNet [27], which is a learned predictor with position
and scene input. See Supplement Sec. 3 for a comparison with YNet.

4. ATP Finetune: Adaptation baseline which finetunes scene-aware predictor
head Pp without latent corridors.

We implement the learned trajectory baseline by taking the encoder, decoder and
trajectory loss from PECNet [28]: we use an architecture proven to be successful
on the trajectory prediction problem, removing multimodality for simplicity.
Similarly, YNet’s [27] encoder and trajectory decoder are used for the scene-
aware baseline.

5.5 Metrics

Our experiments are evaluated using the Average Displacement Error (ADE) [35]
and Final Displacement Error (FDE) [2] metrics. ADE is the average I error
between the entire predicted and ground truth trajectory, while FDE is the [,
error between just the final point of the predicted and ground truth trajectories.

6 Results

Here, we detail quantitative and qualitative results on MOTSynth, MOT, and
WildTrack, and EarthCam datasets.

6.1 MOTSynth Results

We first evaluate predictor improvement enabled by latent corridors when the
deployment scene is in the pre-training dataset, D. We train the baselines and
two variants of our ATP method (LC and LC + Joint Finetune, described in
Sec. 4.3) on the MOTSynth pre-training dataset D. All models see the same
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Fig. 3: Qualitative results on MotSynth (top; synthetic) and MOT and WildTrack
(bottom; real). These examples show scenarios where our LC + per-scene finetune ATP
method (orange) outperforms the scene-aware baseline (purple). In several MOTSynth
examples, the baseline predicts the pedestrian floats into the air (top row), while our
method has gained awareness of where the 3D ground plane lies in the 2D image. We
also note that patterns of behaviour such as walking on the sidewalk instead of into
the road (second row left) and walking up the traversable portion of stairs (second row
right) are captured. On real data, we observe similar awareness of the ground plane
and obstacles, as well as a better understanding of nuanced human behavior patterns
such as crossing diagonally across a plaza.

training data, and both the scene-aware baseline and our adaptive method are
conditioned on scene semantic segmentation maps. Results are in the first column
of Table 1. The learned trajectory baseline significantly improves over constant
velocity, and adding in scene awareness results in a 7.6% performance gain on
ADE and 3.5% gain on FDE. Our latent corridor approach results in a 5.7%
and 9.9% improvement over the scene-aware baseline for ADE, without and
with joint finetuning of the predictor layer respectively, and a 6.5% and 11.6%
improvement on FDE. This indicates that our latent corridor approach more
effectively learns scene-conditioned information that is useful for the trajectory
prediction task.

Next, for a random subset of 25 of the MOTSynth scenes, we additionally
train latent corridors with per-scene finetuning (LC + Per-Scene FT, Sec 4.3).
The datasets Dy, correspond to increasing human-second lengths. The test set
trajectories are the last 20% of agents in the deployment scene, and the train-
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Fig. 4: Qualitative results over time. Our method’s predictions trained on a short
number of human seconds (2%) are shown in light orange, to dark orange for a human
seconds training time of 80%. With the latent corridor trained on a tiny amount of data,
the predictions can significantly improve, but at times are close to the baseline. When
more human seconds of data are seen, the adaptation results consistently improve.
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Fig.5: Learning latent corridors over time. (a and b): The x-axis represents
adaptation time in person-seconds, or the amount trajectories used to train A(P), and
the y-axis represents the ADE. Results are normalized per-scene and averaged over
models trained on 25 MOTSynth scenes (a) and 7 from MOT and WildTrack (b),
with shaded area o/10. On all data, even with a short adaptation time, our methods
improve on the baselines, and as adaptation time increases, performance improves.
Latent corridors + per-scene finetuning has the best performance. ¢) Comparison to
baseline over many MOTSynth scenes for models trained with 8% (point) and 80%
(arrowhead) h-s datasets. Each arrow represents one scene, with the ADE using our
ATP method plotted against the scene-aware baseline ADE. For some deployment
scenes, the scene-aware baseline suffices, whereas other scenes see much more significant
benefits from our method.

ing sets consist of the first 2,4, 8,16, 32, 48,64 and 80% of agents to enter the
scene. Results normalized per-scene and averaged are shown in Fig. 5b. Using
only latent corridors performs comparably to only finetuning the last layer for
each deployment scene, while latent corridors with per-scene finetuning yields
significant performance gains. We visualize the ADE results per-scene with our
LC + finetuning method trained with 8% and then trained with 80% of the data
in Fig. 5c. We see that while the effectiveness of the adaptation for varying time
horizons differs for each deployment scene, there are many scenes where adapta-
tion yields significant gains, and some where the improvement on ADE error is
up to 63.4%. We hypothesize that scenes where our method yields smaller gains
exhibit behaviors and environment geometries that the prior P is sufficient for.

Qualitative results. Visualizations from the per-scene models can be seen in
Fig. 3 and Fig. 4. We observe many examples where the scene-aware baseline
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seems to lack awareness of the ground plane. In multiple instances, the scene-
aware baseline predicts a pedestrian floats into the air (Fig. 3 top row and Fig. 4),
whereas our predictions lie closely in line with the ground truth trajectory in
terms of distance from the ground plane. This holds even for non-planar ground
planes: When a pedestrian walks up stairs, our model seems to better understand
their 3D structure, for example in the bottom right of Fig. 4. Additionally, our
approach captures trends of behaviour in scenes such as walking on the sidewalk
instead of into the road, walking around the rotunda, and walking up the section
of smaller, easily traversable steps (see Fig. 3 second row, left to right).

6.2 MOT and WildTrack Results

We next investigate if latent corridors help predictor adaptation when the de-
ployment scene is outside of the pre-training dataset, and if latent corridors
outperform ATP via direct finetuning on deployment data. Specifically, we use
the base predictor P which only saw MOTSynth data and then directly do sim-
to-real adaptation via latent prompting, finetuning, or a combination thereof
on seven real human pedestrian scenes from MOT and Wildtrack. Plots of the
ADE over time averaged over these scenes is shown in Figure 5a. Regardless
of the ATP setting, adaptation over time results in a consistent error reduction
compared to the baselines. While only finetuning seems to be slightly more effec-
tive on real-world scenes than prompting alone, our latent corridors + per-scene
finetuning approach is significantly more effective (11.2%) than finetuning alone
(see Table 1).

Qualitative results. Visualizations of baselines and our LC + PSF approach
on MOT and WildTrack are in Fig. 3. Similar trends from experiments on syn-
thetic data carry over. Our approach enables the predictor to better ground
future behavior in the scene geometry: for example, pedestrians are no longer
predicted to float upwards (third row, left and middle), and future behavior is
guided by a finer-grained awareness of obstacles (third row right, bottom row left
and middle). We also observe our adapted predictor learning trends in human
behavior: in the WildTrack plaza environment shown in Fig. 1 middle row and
Fig. 3 bottom right, pedestrians tend to avoid the middle of the plaza and in-
stead cross it diagonally. Our method learns this subtle, scene-specific behavior
pattern and thus predicts more accurately.

6.3 EarthCam Results

Finally, we evaluate the performance of our approach on truly “in-the-wild” data
by scraping four 5-minute videos of pedestrian data captured in different loca-
tions: Rick’s Cafe in Jamaica, Times Square in New York City, and Bourbon
Street in New Orleans during daytime and nighttime. Quantitatively, the results
on this in-the-wild data align with our results on real and synthetic data: our
ATP model with latent corridors and per-scene finetuning outperforms the non-
adaptive baselines and pure finetuning (see Table 1). Qualitatively in Fig. 6, we
see a variety of interesting adaptations. At the cafe, there is a complicated path
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Fig. 6: Results on EarthCam webcam data. At a cafe in Jamaica (top left 2
panels) with an overlook and stairs on the edge of the water, our model (orange) is
able to correctly predict that people will stick to moving up and down the path created
by the stairs, while the scene-aware baseline (purple) predicts people will walk directly
into the water or over the edge of the path.In Times Square, a billboard depicts human
actors in motion (top right 2 panels). The scene-aware baseline assumes that these
actors will move following their observed history, while our model correctly predicts
that anyone in the area of the billboard will stay in the billboard. We train our method
on one NoLA intersection during the daytime (bottom left 2 panels), when pedestrians
must obey vehicles moving through the street, and at nighttime (bottom right 2 panels),
when pedestrians take over. During the day, the model learns to account for humans
walking through crosswalks instead of diagonally into the intersection, and to account
for transient push-carts in the area.

through an overlook that twists down stairs towards the water. The scene-aware
baseline often predicts that people will jump over a ledge, whereas our method
learns the boundaries of the paths that people follow and is able to predict that
people will stay within those boundaries. In Times Square, the scene-aware base-
line does not recognize that people on a billboard will stay within the billboard,
whereas our method is able to recognize that. In the NoLA videos, our method
adapts to daytime patterns where pedestrians navigate around carts and don’t
frequently walk diagonally through streets because of through-traffic, but when
the adaptive predictor observes nighttime behavior, it no longer has to respect
these daytime patterns and learns to predict pedestrians as crossing diagonally.
Similarly to the prior datasets, our ATP model again learns to ground pedestrian
future behavior in the 3D ground plane.

7 Conclusion

In this work, we formalize and study the problem of adaptive trajectory predic-
tion: the ability of human predictors to adapt to changing deployment conditions
and environments. To this end, we proposed a lightweight adaptation approach
grounded in image-based prompt tuning called latent corridors. Through ex-
tensive experiments on both simulated and real-world pedestrian datasets, we
observed that latent corridors enable a data-efficient way to adapt pre-trained
predictors to new deployment-scene-specific human behavior.
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